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Space-Domain Green’s Function Approach to
the Capacitance Calculation of Multiconductor
Lines in Multilayered Dielectrics with
Improved Surface Charge Modeling

WIM DELBARE anp DANIEL DE ZUTTER

Abstract —An integral equation method for the calculation of capaci-
tance and inductance matrices is presented. The method is suitable for
multiconductor transmission lines embedded in a multilayered dielectric
medium on top of a ground plane. Conductors of arbitrary polygonal cross
section can be handled, as well as infinitely thin conductors. The method is
new in two respects. The kernel of the integral equation is the space-
domain Green’s function of the layered medium. The accuracy of the
solution is enhanced by using basis functions which exactly model the
singular behavior of the charge density in the neighborhood of a conductor
edge. Numerical examples show the accuracy of the calculations and the
complexity of the configurations that can be treated.

1. INTRODUCTION

N THIS PAPER a new method will be described for the

calculation of the capacitance and inductance matrices
of multiconductor transmission lines embedded in a multi-
layered dielectric medium on top of a ground plane. In
earlier publications this problem has been treated in differ-
ent ways [1]-[3].

Recent approaches to the problem have been based on
the solution of an integral equation with the Green’s
function as its kernel. The Green’s function adopted as a
kernel function is either the free-space Green’s function [4]
or the Green’s function for the layered dielectric medium
[51-]9]. In the first case, polarization charges at the bound-
aries between the different dielectric layers of the medium
have to be introduced as additional unknowns together
with the actual surface charges on the conductors. In the
second case only the surface charges themselves form the
unknowns of the problem. In most cases the integral
equation is solved using a point-matching technique [4].

The present method is also based on an integral equa-
tion for the surface charges on the conductors which is
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solved by the point-matching technique. It is original in
two respects. In order to be able to solve for many layers,
the Green’s function for the layered medium is calculated.
This avoids the problem of introducing additional polar-
ization charges when using the free-space Green’s function.
In previous publications using the Green’s function of the
layered medium with many layers, the Green’s function
has been obtained by the method of separation of vari-
ables [6] or calculated in the spectral domain [7]-[9]. The
use was restricted to infinitely thin strip conductors. In our
approach, the Green’s function is determined in the spec-
tral domain, but its space-domain form is found by explic-
itly calculating its inverse Fourier transformation. This
technique allows the treatment of thick conductors of
arbitrary polygonal cross section. A second way in which
our method differs from previously published approaches
is the way in which the surface charges are expanded,
using basis functions which explicitly account for the sin-
gularities of these charges near the edges of the conduc-
tors.

Numerical results for a number of configurations, some
of which are also found in previous publications, illustrate
the flexibility and accuracy of our method.

II. GENERAL FORMULATION OF THE PROBLEM

The general geometry of the problem is shown in Fig. 1.
An arbitrary number of conductors N¢ are embedded in
an arbitrary number of nonmagnetic dielectric layers Nd.
The geometry is independent of the z direction, and the
perfectly conducting ground plane is located at y = 0. The
dielectric layers are numbered starting at the ground plane.
The ith dielectric layer has a dielectric constant €, and the
y coordinate of the top of this layer is at y=d,. Our
approach will be valid for perfect conductors of arbitrary
polygonal cross section as well as for infinitely thin per-
fectly conducting strips. Curved cross sections have to be
approximated by a suitable polygon. We start from a
representation of the potential V(r) in terms of the surface
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Fig. 1. Multiconductor transmission lines in a multilayered dielectric.

charge densities p,(r") on each conductor surface S;:

L [0()G() ' =v(n). ®

Here G(r|r’) represents the two-dimensional Green’s func-
tion of the layered dielectric medium of Fig. 1.

In order to determine the capacitance matrix C of the
configuration under study, (1) must be solved for V(r) =1
on each particular conductor surface S; while being zero
on the other conductors. The total charge ¢, (per unit of
length in the z direction) on conductor S, corresponding to
this potential distribution yields the element C, of the
capacitance matrix.

The inductance matrix L is related to the vacuum
capacitance matrix C,, by the simple formula L-Cj, = €yu,
[4]. The vacuum capacitance matrix C,, itself is the capaci-
tance matrix of the conductor configuration under study
but with all dielectrics replaced by free space.

The central problem addressed in this paper is the
solution of the integral equation (1). Our method consists
in expanding the p’s in a suitable set of basis functions
and in enforcing (1) at a limited number of points, i.e., the
well-known point-matching technique. Before concentrat-
ing on the discretization of the surface charges and the
solution of the integral equation, we will first describe how
to determine the spatial Green’s function G.

III.

Due to the uniformity of the dielectric medium in the x
direction the Green’s function G(x, y|x’, y’) depends only
upon the difference |x — x’|. Hence, in order to determine
G, it will be sufficient to determine the potential due to a
line charge located at x’= 0 but with an arbitrary value of
y’, ie, G(x, y|0, ¥"). To do this we introduce the Fourier
transformation of all quantities with respect to the x
coordinate. The Fourier-transformed Green’s function
G(a, y|0, y") is related to the original Green’s function as
follows:

GREEN’S FUNCTION IN THE FOURIER DOMAIN

~ + 00
G(a,ylﬂ’y')=f_ G(x,y0, y)e**dx.  (2)
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Using the above-cited property of the Green’s function,
G(x, y|x’, y") can easily be expressed in terms of the
inverse Fourier cosine transformation of G(a, |0, y’) as
follows:

1 +o0
G(x, y|lx', y') = —j(; G(a, |0, y")cos[a(x — x')] da.

3)

3

In what follows, the shorthand notation G will be reserved
for G(a, |0, y’). Before we give details on the calculation
of G, it is important to remark that the height y’ of the
unit line charge which is the source of G can be taken to
coincide with one of the boundaries between the layers of
the dielectric medium. Indeed, if this line charge were
located within a layer, it would suffice to divide this layer
into two new layers but with the same dielectric properties.
In what follows we assume that the line charge is located
at y’=d,, ie., at the boundary between the kth and the
(k +1)th layer.
Within each dielectric layer G satisfies

4%G .

—5—a’G=0, i=12,---,Nd. (4)

The solution of (4) in the ith dielectric layer is

G(a, y10,y) = A,e® + Be™®. (5)
The coefficients A4, and B, can be determined by applying
the appropriate boundary conditions at the ground plane
(y = 0), at the interfaces between the layers, and at infinity
(y = 00) and by applying the correct jump conditions at
y'=d,, ie., the height at which the line source is located.

At y =0, the potential equals zero; consequently 4, =
~ B,. At the interfaces between subsequent layers G and
¢, 3G /0y must be continuous, expressing the continuity of
the potential and of the normal component of the dielec-
tric displacement vector D. For y — oo the potential must
vanish. As G(a, |0, y’) is only calculated for a> 0 (3),
this implies that A,, must be zero. In order to solve the
set of equations for the 4,’s and the B,’s in a numerically
stable way, we proceed as follows. At y=d,, i.e., the top
of the ith layer, the unknown coefficients in this layer can
be expressed in terms of the coefficients of the (i +1)th
layer and vice versa:

2ad, 20d,.,
A [ A . itk (6)
B, B; 1

and
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where

- laie~2«x<d1+l—d,»> b,}
EX2aN

bie*Za(diH*di) a

U= | pmom ! (®)
i f-e_za(d"+17d”) c<e*2"‘(di+1_di)
4 i

a,= (/) +e, /e b=(1/2)(0¢, /6.,
;= (1/2)(1 + Er,i/er,H—l) fi= (1/2)(1 - €r,i/€r,i+1)'

Instead of solving for the A4,’s and B,’s, we solve for
A;exp(2ad,) and for B;exp(—2ad,). In this way all grow-
ing exponentials are removed from 7; and U, and numeri-
cal overflow is avoided in making products of T, or U
matrices. Repeated use of (6) allows us to express A4,
and B, in terms of B,;,, while repeated use of (7) allows
us to express A, and B, as a function of 4. In order to
determine the remaining unknowns 4; and B,,, we only
have to impose the appropriate jump conditions at y'= d,
i.e., continuity of the potential and jump condition for the
normal component of the dielectric displacement vector:

Ae® + Be~ = A, , e+ B, , e %

ad;, __ —ad,
€ ki 1(Aps1e®% = By e o%)

-1

ad ~ady ) —
—er,k(Ake — Bpe k)— .
ae

(©)

Solution of (9) in terms of 4, and By, and application of
(6) and (7) finally lead to the solution for all 4 and B
coefficients and hence to the potential G' everywhere.

IV. GREEN’S FUNCTION IN THE SPACE DOMAIN

To go from the Fourier domain to the space domain, the
integral in (3) has to be calculated. To this end, the
integration interval [0, + co] is divided into two parts:
[0,T] and [T, + oo]. In the first interval, the full expression
for G calculated above is used, while in the second interval
G is replaced by its asymptotic approximation. The con-
stant T is determined as the value of the Fourier variable
a for which the relative difference between G and its
asymptotic approximation is smaller than 10 6, Integra-
tion over [0, T'] is performed using a Gaussian quadrature
formula [12]. .

In order to obtain the asymptotic expression for G, only
the slowest decreasing exponentials (as a function of «)
occurring in 7; and U; (8) are retained. The final result for
the asymptotic expression of G is given by

e ¥

4
lim G=G, =Y
S i=1

4
=X 6P (10
i=1 ’

The expressions for the constants C; and the distances Y,
as well as a physical interpretation of these distances, are
given in the Appendix. However, it is important to note
that Y, simply represents the distance in the y direction
between the source point and the observation point. Hence,
this distance can become zero, which is not the case for Y,,

Y;, and Y,. The four contributions to G, in (10) can be
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Fig. 2. Discretization of the surface charges.

integrated analytically over the interval [T, + co]:
1 +o0 €~ a¥;
_ Ci
TYT 44

cos[a(x —x')] da

= 2C_7; [El(Y)+ El(Y*)] = Go<oi)

y=T[Y,+ j(x—x)].

(11)

In what follows we write the sum of the four terms G as
G,
4 .
G,= Y GY.

i=1

(12)

In (11), E, represents the exponential integral [10]. For the
case where Y, becomes zero, the integration over [T, + o]
can be expressed in terms of the cosine integral Ci [10]:

1 ,+00 cosfa(x—x’
Lo o=l
mYT 44

_ "G D =aO(Y =
Ci(T|x—x'|) =G¥(Y,=0). (13)
a

V. DISCRETIZATION OF THE SURFACE CHARGES

The unknown charge distribution p,(r’) on each conduc-
tor is expanded in basis functions. To this end each side of
a polygon is divided into a number of elementary intervals.
In the inner intervals, such as 4B (Fig. 2), linear basis
functions are used:

p(t)=‘xi(1_t)+xi+1t’ (14)

where ¢ is proportional to the arc length along an elemen-
tary interval. The coefficients x, and x,,, are the un-
known coefficients of the basis functions and correspond
to the charge densities in the endpoints of the interval.

In the outer intervals near the edges, such as EF, the
first terms of a series expansion which accurately models
the singular behavior of the charge distribution in the
neighborhood of an edge are used [11]. In this case, the
charge distribution takes the form

0<r1

p(t) = x " 1+ x,t7, r>0;0<r<1

(15)

where ¢ is proportional to the distance to the edge. The
sum x, +x, corresponds to the charge density in the
nonsingular endpoint of the interval. The value of » is
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obtained from a formula which was derived by Meixner
[113:
€ —€ sin v
176 _ 2 . (16)
g+e, sinv(2¢,—o,)
The meanings of the quantities €, €,, ¢, and ¢, are made
clear in Fig. 2.

VI. SOLUTION OF THE INTEGRAL EQUATION
AND SELF-PATCH CALCULATION

Using the space-domain Green’s function found in Sec-
tion IV and starting from the discretization of the surface
charges adopted above, the contributions to the integral
equation (1) from every elementary surface charge interval
must be evaluated for each point-matching point in which
(1) is enforced. We must distinguish between the case
where the matching point does not belong to the charge
interval we have to integrate over, and the case where it
does belong to that interval, i.e., the so-called self-patch
contribution. For the non-self-patch contributions simple
Gaussian quadrature can be used to perform the integra-
tion. The self-patch contribution, however, needs special
attention and will be discussed below. The matching points
are chosen in the endpoints of all elementary charge inter-
vals and also in the middle of the outer intervals of each
side of the conducting polygons, i.e., the intervals contain-
ing the edges of the conductors. The number of equations
obtained in this way exceeds the number of unknowns, but
only marginally. This set of equations is solved in the
least-squares sense.

We now turn to the self-patch calculation. In order to
illustrate the problem, we restrict ourselves to the self-patch
calculation for an elementary charge interval near the edge
of a conductor. Furthermore, we suppose that this interval
is parallel to the x axis and that the matching point is
located in the middle of the interval. The situation corre-
sponds to the one shown in Fig. 2 for the interval EF. For
different situations the calculations proceed in an analo-
gous way, although they are less intricate in the case of an
inner interval such as AB (see Fig. 2).

The self-patch contribution to (1), from the interval EF
described above, is

= [ p(erax [“Geosla(x—x)] da (17

As in (15), we introduce the local ¢ coordinate to describe
p and again divide the a integration interval into two
parts, i.e., [0, T] and [T, + oc]. Hence (17) takes the form

L/l(xlt”_1 +x,0" ) (Gp +G,) dt
0
1

GT=—fTéCOSaL(T—t) de
T Y0

e °h

4 1 e
G.=Y G§;>+—f C,—— cosaL(7—t)da. (18)
i=2 T o
In these equations L represents the length of EF and 7 is

the ¢ value of the point-matching point x. As in the
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non-self-patch case, no problem arises for the contribution
coming from G,. We first calculate G, using Gaussian
quadrature, and the integration over ¢ is performed using
Gauss-Jacobi quadrature, which handles the t*~! and ¢’
singularities exactly. The Gauss—Jacobi quadrature is based
on the generalized Jacobi polyncmials P [10]. As
explained in Section IV, the contribution from G, consists
of four parts: G, i=1,2,3,4 (12). For i=2, 3, and 4, ¥,
never vanishes. Hence, the integration over ¢ can proceed
in the same way as for G . The only real difficulty is due
to the contribution which would normally arise from G.
This contribution depends upon Y}, i.e., the distance in the
y direction between the source point and the point-match-
ing point. In the case of the self-patch contribution from
EF, Y, is zero. Looking at (13), the corresponding value of
G still exists under the form of a cosine integral, but
while integrating over the self-patch interval, x will be- -
come equal to x’ and the cosine integral becomes infinite.
In order to obtain the correct contribution to the self-patch
term in the integral equation, we still write GV under the
form of a cosine integral, but in order to integrate over ¢,
the integration interval is divided in two parts: [0, 7] and
[7,1]:

LC| /=
: (2127724 x,t” ) Ci[ LT (7 — 1)] dt
0

LC, n

-— (x,2 "1+ x,”)Ci[LT (2 — 7)] dt.  (19)
The cosine integral has a logarithmic singularity at ¢ = 7.
Hence, the first integral exhibits a logarithmic singularity
at t=17 and a ¢ singularity at =0, where k=» or
x =p —1. The second integral only exhibits a logarithmic
singularity at ¢ = 7. The final integration is performed in
the following way. In both cases the cosine integral is
written as the sum of its logarithmic singularity and the
remaining regular part. If we now also divide the interval
[0,7] into two equal parts, we cnly need to calculate
integrals which have a ¢* singularity, a logarithmic singu-
larity, or no singularity at all in the endpoints of the
integration interval. These integrations are performed us-
ing Gauss—Jacobi, Gauss-Laguerre, or simple Gaussian
quadrature [12].

VII. NuMERICAL EXAMPLES
A. Thin Microstrip Line

As a first example we start with the analysis of a very
simple configuration, i.e., the thin microstrip line shown in
Fig. 3. This analysis is used to illustrate the accuracy of the
method. For different values of the ratio W/H, where W is
the width of the strip and H is the substrate thickness,
Table T shows the comparison between the characteristic
impedance values obtained with our method, the results
from Wei et al. [4] based on the free-space Green’s func-
tion, the results from the well-known formulas of Gupta
[1], and those from more recent and more accurate formu-
las by Hammerstad and Jensen [13]. Our results are ob-
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Fig. 3. Thin microstrip line.
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TABLE I
CHARACTERISTIC IMPEDANCES FOR THE THIN MICROSTRIP LINE
W/H |Our results | Gupta Wei Hammerstad
0.4 90.3204 90.1907 90.2785 90.3339
0.7 72.7372 72.6731 73.9626 72.7516
1.0 61.8422 61.5907 62.8109 61.8397
2.0 42.2676 42.3945 42.9980 42.2600
4.0 26.4429 26.5168 26.9709 26.4593
10. 12.7132 12.7164 ~ | 12.9961 12.7198

tained by using 20 subsections on the strip. The results of
Wei et al. [4] are obtained by using 12 subsections on the
strip, 15 subsections at the dielectric interface between
—W/2, and another 15 subsections at the
dielectric interface between W/2 and 2W. At small W/H
values, differences of up to 2 percent are found between
our results and those from Wei, and although the differ-
ences between Gupta and Hammerstad are very small, our
method is closer to the more exact results by Hammerstad.

—-2W and

B. Three Line Bus in a Layered Dielectric

This is an example of a more complex geometry, shown
in Fig. 4. For the charge modeling, we used ten subsections
on each horizontal side and three subsections on each
vertical side of the strips. Table II gives the results for the
capacitance matrix C and for the inductance matrix L.
The results of our charge modeling are exemplified in Fig.
5. This figure shows the calculated charge distribution
along the four sides of the second strip. For this partlcular

case, all strips are at the same potential of 1 V.

C. Geometry Containing a Conductor of Circular
* Cross Section

The final example is taken from [4] in order to illustrate
the ability of our method to handle conductors of circular
cross section (see Fig. 6). For the charge modeling, we used
14 subsections on conductors 1 and 2. The circular cross
section was approximated by an octagon. As each side of
the octagon was divided into three subsections, a total of
24 subsections was used for the third conductor. Table III
shows a comparison between our results and those ob-
tained by Wei et al. [4]. Results are given for the capaci-

tance matrix C and for the inductance matrix L.

VIIL

In this paper we have described an improved method for
determining the capacitance and inductance matrices of a
multiconductor transmission line in a multilayered dielec-

CONCLUSION

a=350 um b =150 pm ¢c=70 um

Fig. 4. Three line bus in a layered dielectric.

TABLE 1II
CAPACITANCE AND INDUCTANCE MATRIX FOR
THE CONFIGURATION OF FIG. 4

[142.09 -21.765 -0.8920]
C=|-21.733 93.529 -18.098| (PF/m)
|-0.8900 -18.097 87.962 |
[ 277.73 87.758 36.770]
L=| 87.758 328.60 115.77| (nH/m)
| 36.770  115.77  337.98]
-1 -1 -1 -1
0401 pClum) m 0.40  PClum) m
035} 0.35 |
B c B c
0.30 [ 0.30 F
0.25 0.25
ozt A ° oo} A D
0.15 015 |
0.10 0.10 |
0.05 [ 0.05 |
0‘000 20 40 go Mm 0'Ooo 100 200 300 MM
A B B c
_ 1 -1 i 1 -1
0407 hepm) m 0.40 pC(um] m
0.35 035
B c
0.30
030 |
0.25
0.20 0.25 A D
0.15
0.20 H{
0.10
015}
0.05
000, 20 40 60 M 0'100 100 200 300 H™
c D D A

Fig. 5. Charge distributions along the sides of the second strip of Fig. 4.
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Fig. 6. Multiconductor transmission line containing a conductor of
circular cross section.

TABLE III
CAPACITANCE AND INDUCTANCE MATRIX FLEMENTS FOR
THE CONFIGURATION OF FIG. 6

Our results Cao Wei et al. Units
C11 125.86 124.4 pF/m
Cqi2 -13.125 -13.00 pF/m
C13 -69.555 -68.25 pF/m
Coo 34.101 33.40 pF/m
Co3 -7.1818 -7.196 pF/m
Cs3s 357.62 352.3 pF/m
L11 491.90 496.5 nH/m
Lio 198.88 199.6 nH/m
L3 117.50 118.3 nH/m
Loo 612.83 616.3 nH/m
Log 76.781 77.28 nH/m
L33 229.94 233.1 nH/m

tric medium. By explicitly calculating the Green’s function
in the space domain, it became possible to handle conduc-
tors of arbitrary polygonal cross section. We have demon-
strated how the inverse Fourier transformation of the
spectral Green’s function can be handled in order to
determine the self-patch contributions to the integral equa-
tion correctly. Another novelty of our approach resides in
the fact that the singularities of the charges near the edges
of the conductors are modeled exactly. The particular basis
functions used in this paper ensure quick convergence of
the numerical results, even with a small number of subsec-
tions per circumference. The selected examples demon-
strated both the accuracy and the flexibility of our method.
Finally, it should be emphasized that the use of the Green’s
function of the layered medium results in reduced calcula-
tion times. This is essential for practical design purposes.
Special care is taken to be able to handle structures which
are large in the x direction. It is clear that our method can
easily be extended to the stripline case, i.e., the case where
the multilayered medium is bounded by two perfectly
conducting ground planes.
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Fig. 7. The four waves of the asymptotic approximation.

APPENDIX

The differential equation (4) and the corresponding
boundary conditions in the spectral domain have the form
of the equations governing the behavior of voltage and
current along a cascade of transmission lines [9]. The
voltage at each point of the line results from a superposi-
tion of a direct wave and a number of multiply reflected
waves. The amplitude of the waves is multiplied by a
damping factor e~*¢, where d is the total distance traveled

. by the wave in the y direction.

The four waves that are taken into account in the
asymptotic approximation are depicted in Fig. 7. The
coefficients C, in (10) are

1 m 2e

C = (A1)
2€O€r,k 1=k €, + € ix1

er,k - 6r,k—l

=ttt (A2)
et €
€ — €,

C3 =C1 rom+1 r.m+2 (A3)
er.m+1+ Er,m+2

C4=Cl(€r,k——€r,k~1)(er,m+1_er,m+2). (A4)

6r,k—f-er,k—l €r.n’m‘—l_er,erZ
The distances Y, in (10) are the distances depicted on
Fig. 7, ie.,
Yi=dg,—dy

Y,=dg—d,+2(d,—d, ;)
Y3 = dobs_ dk +2(dm+1 - dobs)
Y, =dgp—d+2(dy—d;_1)+2(d,, .1 —dg,). (AS)
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