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Space-Domain Green’s Function Approach to
the Capacitance Calculation of Multiconductor

Lines in Multilayered Dielectrics with
Improved Surface Charge Modeling

WIM DELBARE AND DANIEL DE ZUTTER

Abstract — An integral equation method for the calculation of capaci-

tance and inductance matrices is presented. The method is suitable for

multiconductor transmission lines embedded in a multilayered dielectric

medium on top of a ground plane. Conductors of arbitrary polygorraf cross

section can be handled, as well as infinitely thin conductors. The method is

new in two respects. The kernel of the integral equation is the space-

domain Green’s function of the layered medium. The accuracy of the

solution is enhanced by using basis functions which exactly model the

singular bebavior of the charge density in the neighborhood of a conductor

edge. Numerical examples show the accuracy of the calculations and the

complexity of tbe configurations that can be treated.

I. INTRODUCTION

I N THIS PAPER a new method will be described for the

calculation of the capacitance and inductance matrices

of multiconductor transmission lines embedded in a multi-

layered dielectric medium on top of a ground plane. In

earlier publications this problem has been treated in differ-

ent ways [1]–[3].

Recent approaches to the problem have been based on

the solution of an integral equation with the Green’s

function as its kernel. The Green’s function adopted as a

kernel function is either the free-space Green’s function [4]

or the Green’s function for the layered dielectric medium

[5]-[9]. In the first case, polarization charges at the bound-

aries between the different dielectric layers of the medium

have to be introduced as additional unknowns together

with the actual surface charges on the conductors. In the

second case only the surface charges themselves form the

unknowns of the problem. In most cases the integral

equation is solved using a point-matching technique [4].

The present method is also based on an integral equa-

tion for the surface charges on the conductors which is
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solved by the point-matching technique. It is original in

two respects. In order to be able to solve for many layers,

the Green’s function for the layered medium is calculated.

This avoids the problem of introducing additional polar-

ization charges when using the free-space Green’s function.

In previous publications using the Green’s function of the

layered medium with many layers, the Green’s function

has been obtained by the method of separation of vari-

ables [6] or calculated in the spectral domain [7]–[9]. The

use was restricted to infinitely thin strip conductors. In our

approach, the Green’s function is determined in the spec-

tral domain, but its space-domain form is found by explic-

itly calculating its inverse Fourier transformation. This

technique allows the treatment of thick conductors of

arbitrary polygonal cross section. A second way in which

our method differs from previously published approaches

is the way in wlich the surface charges are expanded,

using basis functions which explicitly account for the sin-

gularities of these charges near the edges of the conduc-

tors.

Numerical results for a number of configurations, some

of which are also found in previous publications, illustrate

the flexibility and accuracy of our method.

II. GENERAL FORMULATION OF THE PROBLEM

The general geometry of the problem is shown in Fig. 1.

An arbitrary number of conductors Nc are embedded in

an arbitrary number of nonmagnetic dielectric layers Nd.

The geometry is independent of the z direction, and the

perfectly conducting ground plane is located at y = O. The

dielectric layers are numbered starting at the ground plane.

The i th dielectric layer has a dielectric constant c,, and the

y coordinate of the top of this layer is at y = d,. Our

approach will be valid for perfect conductors of arbitrary

polygonal cross section as well as for infinitely thin per-

fectly conducting strips. Curved cross sections have to be

approximated by a suitable polygon. We start from a

representation of the potential V(r) in terms of the surface
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Using the above-cited property of the Green’s function,

G(x, ylx’, y’) can easily be expre:wed in terms of the

inverse Fourier cosine transformation of G( a, y 10, y’) as

follows:
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Fig. 1. Multiconductor transmission lines in a multilayered dielectric.

charge densities p, ( r’) on each conductor surface Sj:

f f ,o,(~’)G(rk’) dr’= V(r). (1)
,=1 s,

Here G(rlr’) represents the two-dimensional Green’s func-

tion of the layered dielectric medium of Fig. 1.

In order to determine the capacitance matrix ~ of the

configuration under study, (1) must be solved for V(r) = 1

on each particular conductor surface Si while being zero

on the other conductors. The total charge q, (per unit of

length in the z direction) on conductor SJ corresponding to

this potential distribution yields the element Cj, of the

capacitance matrix.

The inductance matrix ~ is related to the vacuum

capacitance matrix ~v by the simple formula ~” ~v = COpo

[4]. The vacuum capacitance matrix :V itself is the capaci-

tance matrix of the conductor configuration under study

but with all dielectrics replaced by free space.

The central problem addressed in this paper is the

solution of the integral equation (l). Our method consists

in expanding the pj’s in a suitable set of basis functions

and in enforcing (1) at a limited number of points, i.e., the

well-known point-matching technique. Before concentrat-

ing on the discretization of the surface charges and the

solution of the integral equation, we will first describe how

to determine the spatial Green’s function G.

III. GREEN’S FUNCTION IN THE FOURIER DOMAIN

Due to the uniformity of the dielectric medium in the x

direction the Green’s function G(x, ylx’, y’) depends only

upon the difference Ix – x ‘1. Hence, in order to determine

G, it will be sufficient to determine the potential due to a

line charge located at x’= O but with an arbitrary value of

y’, i.e., G(x, ylO, y’). To do this we introduce the Fourier

transformation of all quantities with respect to the x

coordinate. The Fourier-transformed Green’s function

G( a, y 10, y‘) is related to the original Green’s function as

follows:

G(cx,YIO, y’) =~+mG(x, YIO, y’)e-~”xdx. (2)
—m

1 +03.

G(x, ylx’, y’) = ;~ G(a, ylo, Y’)COS[(I(X– X’)] da.

(3)

In what follows, the shorthand notation d will be reserved

for G(cx, ylO, y’). Before we give details on the calculation

of ~, it is important to remark that the height y’ of the

unit line charge which is the source of ~ can be taken to

coincide with one of the boundaries between the layers of

the dielectric medium. Indeed, if this line charge were

located within a layer, it would suffice to divide this layer

into two new layers but with the same dielectric properties.

In what follows we assume that the line charge is located

at y’= d~, i.e., at the boundary between the k th and the

(k+ l)th layer.

Within each dielectric layer ~ satisfies

a%_ ~.

dy2
aG=O, i=l,2,. ... Nd. (4)

The solution of (4) in the i th dielectric layer is

d(a, ylO, y’) = Ale”y-t Bie-ay. (5)

The coefficients A, and B, can be determined by applying

the appropriate boundary conditions at the ground plane

(y= O), at the interfaces between the layers, and at infinity

(y ~ co) and by applying the correct jump conditions at
y’= d~, i.e., the height at which the line source is located.

At y = O, the potential equals zero; consequentlyxAl =

– B1. At the interfaces between subsequent layers G and

c, 13~/J y must be continuous, expressing the continuity of

the potential and of the normal component of the dielec-

tric displacement vector D. For y -) m the potential must

vanish. As ~(a, ylO, y’) is only calculated for a >0 (3),

this implies that A~~ must be zero, In order to solve the

set of equations for the ,4,’s and the B,’s in a numerically

stable way, we proceed as follows. At y = d,, i.e., the top

of the i th layer, the unknown coefficients in this layer cart

be expressed in terms of the coefficients of the (i+ l)th

layer and vice versa:

and
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where

[

~,e–2a(d, +,–dl) b,

~= ‘
bie-2~(d,+, -d,) ~’

1 1

[

c,
g,=

k

j_e-W4+,-4) ~,e-’24d,+, -d,) 1 (8)

ai = (1/2)(1 + cr, i+l/6r, i) b,= (1/2)(1– E,,,+ Jc,,, )

Ci = (1/2)(1+ c,, i/6r, i+J L = (1/2)(1- 6~,i/’6~,i+~).

Instead of solving for the Ai’s and Bi’s, we solve for

Ai exp (2adi) and for Bi exp ( – 2adi). In this way all grow-

ing exponential are removed from ~i and U, and numeri-

cal overflow is avoided in making products of 2, or ~

matrices. Repeated use of (6) allows us to express A k+ 1

and Bk + ~ in terms of B~d, while repeated use of (7) allows

us to express A k and Bk as a function of Al. In order to

determine the remaining unknowns Al and B~d, we only

have to impose the appropriate jump conditions at y’= dk,

i.e., continuity of the potential and jump condition for the

normal component of the dielectric displacement vector:

Ake”d’ + Bke-”dk = Ak~le”dk + Bk~le-”dk

c,,k+l(Ak+le”~~ - Bk+le-”dk)

“r,k(Akeadk- ‘ke-adk)=~- (9)

Solution of (9) in terms of Al and B~d and application of

(6) and (7) finally lead to the solution for all A and B

coefficients and hence to the potential 6 everywhere.

IV. GREEN’S FUNCTION IN THE SPACE DOMAIN

To go from the Fourier domain to the space domain, the

integral in (3) has to be calculated. To this end, the

integration interval [0, + co] is divided into two parts:

[0, T~ and [T, + co]. In the first interval, the full expression

for G calculated above is used, while in the second interval

~ is replaced by its asymptotic approximation. The con-

stant T is determined as the value of the Fourier variable

a for which the relative difference between ~ and its

asymptotic approximation is smaller than 10 – 6. Integra-

tion over [0, T] is performed using a Gaussian quadrature

formula [12].

In order to obtain the asymptotic expression for d, only

the slowest decreasing exponential (as a function of a)

occurring in T, and ~i (8) are retained. The final result for

the asymptotic expression of ~ is given by

—aY,

lim G= G”= ~Ci> = ; QO. (lo)
a-m i=l a izl

The expressions for the constants Ci and the distances ~,

as well as a physical interpretation of these distances, are

given in the Appendix. However, it is important to note

that YI simply represents the distance in the y direction

between the source point and the observation point. Hence,

this distance can become zero, which is not the case for Y2,

Y3, and Y4. The four contributions to ~’ in (10) can be

&
2

Fig. 2. Discretization of the surface charges.

integrated analytically over the interval [T, + co]:

1 +m e-W
—

J
Ci — COSICI( X-X’)] da

%’T a

=:[E,(y)+E,(y*)]=G:)

Y=T[y+j(x–x’)].

In what follows we write the sum of the

G~ :

(11)

four terms G:) as

(12)

In (11), El represents the exponential integral [10]. For the

case where YI becomes zero, the integration over [T, + m]

can be expressed in terms of the cosine integral Ci [10]:

1 +mc Cos[a(x–x’)] da

-J 1
f?T a

– c1———Ci(Tlx–x’1) =G~)(Y1= O). (13)
77’

V. DISCRETIZATION OF THE SURFACE CHARGES

The unknown charge distribution pj(r’) on each conduc-

tor is expanded in basis functions. To this end each side of

a polygon is divided into a number of elementary intervals.

In the inner intervals, such as AB (Fig. 2), linear basis

functions are used:

p(t) =xi(l–t)+xi+lt, o~t~l (14)

where t is proportional to the arc length along an elemen-

tary interval. The coefficients xi and xi+ ~ are the un-
known coefficients of the basis functions and correspond

to the charge densities in the endpoints of the interval.

In the outer intervals near the edges, such as EF, the

first terms of a series expansion which accurately models

the singular behavior of the charge distribution in the

neighborhood of an edge are used [11]. In this case, the

charge distribution takes the form

p(t) =xlt”-l+x2t”, v>o;o~t~l (15)

where t is proportional to the distance to the edge. The

sum xl+ X2 corresponds to the charge density in the

nonsingular endpoint of the interval. The value of v is
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obtained from a formula which was derived by Meixner

[11]:

(16)

The meanings of the quantities El, C2, @l, and +Z are made

clear in Fig. 2.

VI. SOLUTION OF THE INTEGRAL EQUATION

AND SELF-PATCH CALCULATION

Using the space-domain Green’s function found in Sec-

tion IV and starting from the discretization of the surface

charges adopted above, the contributions to the integral

equation (1) from every elementary surface charge interval

must be evaluated for each point-matching point in which

(1) is enforced. We must distinguish between the case

where the matching point does not belong to the charge

interval we have to integrate over, and the case where it

does belong to that interval, i.e., the so-called self-patch

contribution. For the non-self-patch contributions simple

Gaussian quadrature can be used to perform the integra-

tion. The self-patch contribution, however, needs special

attention and will be discussed below. The matching points

are chosen in the endpoints of all elementary charge inter-

vals and also in the middle of the outer intervals of each

side of the conducting polygons, i.e., the intervals contain-

ing the edges of the conductors. The number of equations

obtained in this way exceeds the number of unknowns, but

only marginally. This set of equations is solved in the

least-squares sense.

We now turn to the self-patch calculation. In order to

illustrate the problem, we restrict ourselves to the self-patch

calculation for an elementary charge interval near the edge

of a conductor. Furthermore, we suppose that this interval

is parallel to the x axis and that the matching point is

located in the middle of the interval. The situation corre-

sponds to the one shown in Fig. 2 for the interval EF. For

different situations the calculations proceed in an analo-

gous way, although they are less intricate in the case of an

inner interval such as AB (see Fig. 2).

The self-patch contribution to (l), from the interval EF

described above, is

;J-j(odx’f~COS[(X(X –x’)] da. (17)

As in (15), we introduce the local t coordinate to describe

p and again divide the a integration interval into two

parts, i.e., [0, 7’] and [T, + co]. Hence (17) takes the form

JL ~l(xltv-l+x#’)(G~+ Gm) dt

1 ~.
GT=–

J
GcosaL(7–t)da

‘RO

1 ~ ~-ah

Gm= ~G$)+–j C1— COSCYL(T– t) da. (18)
;=2 ~T a

In these equations L represents the length of EF and r is

the t value of the point-matching point x. As in the

non-self-patch case, no problem arises for the contribution

coming from GT. We first calculate G~ using Gaussian

quadrature, and the integration over t is performed using

Gauss-Jacobi quadrature, which handles the t”- 1 and t”

singularities exactly. The Gauss–Jacobi quadrature is based

on the generalized Jacobi polync~mials P~”’8J [10]. As

explained in Section IV, the contribution from Gm consists

of four parts: G:), i = 1,2,3,4 (12). For i = 2, 3, and 4, ~

never vanishes. Hence, the integration over t can proceed

in the same way as for G~. The only real difficulty is due

to the contribution which would ncm-mally arise from G~lJ.

This contribution depends upon Yl, i.e., the distance in the

y direction between the source point and the point-match-

ing point. In the case of the self-patch contribution from

EF, Y1 is zero. Looking at (13), the corresponding value of

G(l) still exists under the form of a cosine integral, but

w&e integrating over the self-patch interval, x will be-

come equal to x’ and the cosine integral becomes infinite.

In order to obtain the correct contribution to the self-patch

term in the integral equation, we still write G~l) under the

form of a cosine integral, but in order to integrate over t,

the integration interval is divided in two parts: [0, ~] and

[7,1]:

LC1 .
—

–J( Xlt ‘-1+ x2tV)Ci[LT(T –t)] dt
To

LC1 ~
—

–J( Xlt ‘-l+ x,t’)Ci[LT(t - ~)] dt. (19)
T,

The cosine integral has a logarithmic singularity at t = T.

Hence, the first integral exhibits a logarithmic singularity

at t = ‘r and a t‘ singularity at t = O, where K = v or

K = v – 1. The second integral only exhibits a logarithmic

singularity at t = T. The final integration is performed in

the following way. In both cases the cosine integral is

written as the sum of its logarithmic singularity and the

remaining regular part. If we now also divide the interval

[0, ~] into two equal parts, we cnly need to calculate

integrals which have a t K singularity, a logarithmic singu-

larity, or no singularity at all in the endpoints of the

integration interval. These integrations are performed us-

ing Gauss–Jacobi, Gauss–Laguerre, or simple Gaussian

quadrature [12].

VII. NUNIERICAL EXAMPLES

A. Thin Microstrip Line

As a first example we start with the analysis of a very

simple configuration, i.e., the thin microstrip line shown in

Fig. 3. This analysis is used to illust rate the accuracy of the

method. For different values of the ratio W/H, where W is

the width of the strip and H is the substrate thickness,
Table I shows the comparison between the characteristic

impedance values obtained with our method, the results

from Wei et al. [4] based on the free-space Green’s func-

tion, the results from the well-known formulas of Gupta

[1], and those from more recent and more accurate formu-”
las by Hammerstad and Jensen [13]. Our results are ob-
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Fig. 3. Thin microstnp line.

TABLE I

CHARACTERISTIC IMPEDANCES FOR THE THIN MICROSTRIP LINE

Vvlti

0.4

0.7

1.0

2.0

4.0

10.

Our results

90.3204

72.7372

61.8422

42,2676

26.4429

12.7132

I

Gupta Wei Hammerstad

90.1907 90.2785 90.3339

72.6731 73.9626 72.7516

61.5907 62.8109 61.8397

42.3945 42.9980 42.2600

26.5168 26.9709 26.4593

12.7164 12.9961 12.7198

tained by using 20 subsections on the strip. The results of

?Vei et al. [4] are obtained by using 12 subsections on the

strip, 15 subsections at the dielectric interface between

– 2W and – W/2, and another 15 subsections at the

dielectric interface between W/2 and 2W. At small W/H

values, differences of up to 2 percent are found between

our results and those from Wei, and although the differ-

ences between Gupta and Hammerstad are very small, our

method is closer to the more exact results by Hammerstad.

B. Three Line Bus in a Layered Dielectric

This is an example of a more complex geometry, shown

in Fig. 4. For the charge modeling, we used ten subsections

on each horizontal side and three subsections on each

vertical side of the strips. Table II gives the results for the

capacitance matrix ~ and for the inductance matrix ~.

The results of our charge modeling are exemplified in Fig.

5. This figure shows the calculated charge distribution

along the four sides of the second strip. For this particular

case, all strips are at the same potential of 1 V.

C. Geometry Containing a Conductor of Circular

Cross Section

The final example is taken from [4] in order to illustrate

the ability of our method to handle conductors of circular

cross section (see Fig. 6). For the charge modeling, we used

14 subsections on conductors 1 and 2. The circular cross

section was approximated by an octagon. As each side of

the octagon was divided into three subsections, a total of

24 subsections was used for the third conductor. Table III

shows a comparison between our results and those ob-

tained by Wei et al. [4]. Results are given for the capaci-

tance matrix ~ and for the inductance matrix ~.

VIII. CONCLUSION

In this paper we have described an improved method for

determining the capacitance and inductance matrices of a

multiconductor transmission line in a multilayered dielec-

t

a. 350 urn b .150 ym c.70 Fm

Fig. 4. Three line bus in a layered dielectric.

TABLE II
CAPACITANCE AND INDUCTANCE MATRIX FOR

THE CONFIGURATION OF FIG. 4

c’

L=

142.09 -21.765 -0.8920

-21.733 93.529 1-18.098 (Nfrn)

-0.8900 -18.097 87.962

277.73 87.758 36.770

87.758 328.60 1
115.77 (nH/m)

L 36.770 115.77 337.98j

-1 -1

0.40

r

pC@m) m

0.35 }

P
B c

0.30

0.25

0.20
A D

0.15 tl

:U
o 20 40 60 ‘m

A B

0“40[ ‘c(pm~’rn’
035

u

B c
0.30

0.25

0.20
A D

0.15

0.10

0.05

c D

-1 -1

0.40

[

pC(pm) m

0.35

I tsmi
B c

0.30

0.25

0.20 -
A

0.15 -

0.10 -

0.05 -

D

0,00 ~

o 100 200 300 ~m

B c

-1 -1
0.40

1

pCtiml m

0.35

b

B c

0.30

0.25 A D

0.20

0.15

0.10
0 100 200 300 ~m

D A

Fig. 5. Charge distributions along the sides of the second strip of Fig. 4
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Fig. 6. Multiconductor transmission line containing a conductor of

circular cross section.

TABLE III

CAPACITANCE AND INDUCTANCE MATVX ELEMENTS FOR

THE CONFIGURATION OF FIG. 6

[

Cll

C12

C13

C22

C23

C33

L11

L12

L1 s

L22

L23

L33

Our results
125.86

-13.125

-69.555

34.101

-7.1818

357.62

491.90

198.88

117.50

612.83

76.781

229.94

=--+-%
-13.00

-68.25

33.40

-7.196

352.3

496.5

199.6

118.3

616.3

77.28

233.1

pFlm

pFfm

pFlm

pFlm

DFlm

nHlm

nHlm

nHlm

nH/m

nHlm

nHim

tric medium. By explicitly calculating the Green’s function

in the space domain, it became possible to handle conduc-

tors of arbitrary polygonal cross section. We have demon-

strated how the inverse Fourier transformation of the

spectral Green’s function can be handled in order to

determine the self-patch contributions to the integral equa-

tion correctly. Another novelty of our approach resides in

the fact that the singularities of the charges near the edges

of the conductors are modeled exactly. The particular basis

functions used in this paper ensure quick convergence of

the numerical results, even with a small number of subsec-

tions per circumference. The selected examples demon-

strated both the accuracy and the flexibility of our method.

Finally, it should be emphasized that the use of the Green’s

function of the layered medium results in reduced calcula-

tion times. This is essential for practical design purposes.

Special care is taken to be able to handle structures which

are large in the x direction. It is clear that our method can

easily be extended to the stripline case, i.e., the case where

the multilayered medium is bounded by two perfectly

conducting ground planes.

observer

source

u u Cr,k
‘k-l

0
Cr,k- 1

y
////////////////////// //m

Fig. 7. The four waves of the asym~ltotic approximation.

APPENDIX

The differential equation (4) and the corresponding

boundary conditions in the spectral domain have the form

of the equations governing the behavior of voltage and

current along a cascade of transmission lines [9]. The

voltage at each point of the line results from a superposi-

tion of a direct wave and a number of multiply reflected

waves. The amplitude of the waves is multiplied by a

damping factor e- “d, where d is the total distance traveled

by the wave in the y direction.

The four waves that are taken into account in the

asymptotic approximation are depicted in Fig. 7. The

coefficients C, in (10) are

c1= A II 2“”-
2coEr, k ,=~ 67,, + 6,,,+1

cr, k — Cr,k–lC2= c1
Cr,k+ ‘r, k–l

(Al)

(A2)

c3=c16’’’n+crcm+2+2
,,m+l+~r, m+2

(A3)
6

(,‘r, k — Cr, k–lC4= c1
)(

cr, m+l — ~r, m+2

)

(A4)
CTk+~,,&l c,.,~+l—(,,m+z

The distances ~ in (10) are the distances depicted on

Fig. 7, i.e.,

Y1 = dOb, – dk

Y== dOb, – dk+2(dk–dk-1)

Y3 = dOb, – ‘k ‘2(dm+l– ‘ohs)

Ya = dOb, – dk ‘2(dk – dk-l)+2(d~+, – d...). (A5)
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